p27Kip1 modulates cell migration through the regulation of RhoA activation.
نویسندگان
چکیده
The tumor suppressor p27(Kip1) is an inhibitor of cyclin/cyclin-dependent kinase (CDK) complexes and plays a crucial role in cell cycle regulation. However, p27(Kip1) also has cell cycle-independent functions. Indeed, we find that p27(Kip1) regulates cell migration, as p27(Kip1)-null fibroblasts exhibit a dramatic decrease in motility compared with wild-type cells. The regulation of motility by p27(Kip1) is independent of its cell-cycle regulatory functions, as re-expression of both wild-type p27(Kip1) and a mutant p27(Kip1) (p27CK(-)) that cannot bind to cyclins and CDKs rescues migration of p27(-/-) cells. p27(-/-) cells have increased numbers of actin stress fibers and focal adhesions. This is reminiscent of cells in which the Rho pathway is activated. Indeed, active RhoA levels were increased in cells lacking p27(Kip1). Moreover, inhibition of ROCK, a downstream effector of Rho, was able to rescue the migration defect of p27(-/-) cells in response to growth factors. Finally, we found that p27(Kip1) binds to RhoA, thereby inhibiting RhoA activation by interfering with the interaction between RhoA and its activators, the guanine-nucleotide exchange factors (GEFs). Together, the data suggest a novel role for p27(Kip1) in regulating cell migration via modulation of the Rho pathway.
منابع مشابه
Review of cellular and molecular pathways linking thrombosis and innate immune system during sepsis
Cellular and molecular pathways link thrombosis and innate immune system during sepsis. Extrinsic pathway activation of protease thrombin through FVIIa and tissue factor (TF) in sepsis help activate its endothelial cell (EC) membrane Protease Activated Receptor 1 (PAR-1). Thrombin adjusts the EC cycle through activation of G proteins (G12/13), and later through Rho GEFs (guanine nucleotide exch...
متن کاملSilencing RhoA inhibits migration and invasion through Wnt/β-catenin pathway and growth through cell cycle regulation in human tongue cancer.
Ras homolog gene family member A (RhoA) has been identified as a critical regulator of tumor aggressive behavior. In this study, we assessed the role of RhoA in the mechanisms underlying growth, migration, and invasion of squamous cell carcinoma of tongue (TSCC). Stable RhoA knockdown of TSCC cell lines SCC-4 and CAL27 were achieved using Lentiviral transfection. The effects of RhoA depletion o...
متن کاملKDR stimulates endothelial cell migration through heterotrimeric G protein Gq/11-mediated activation of a small GTPase RhoA.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) functions by activating two receptor tyrosine kinases, Flt-1 (VEGFR-1) and KDR (VEGFR-2), both of which are selectively expressed on the primary vascular endothelium. KDR is responsible for VPF/VEGF-stimulated endothelial cell (EC) proliferation and migration, whereas Flt-1 down-modulates KDR-mediated EC proliferation. F...
متن کاملGα13/PDZ-RhoGEF/RhoA signaling is essential for gastrin-releasing peptide receptor-mediated colon cancer cell migration.
Gastrin-releasing peptide receptor (GRPR) is ectopically expressed in over 60% of colon cancers. GRPR expression has been correlated with increased colon cancer cell migration. However, the signaling pathway by which GRPR activation leads to increased cancer cell migration is not well understood. We set out to molecularly dissect the GRPR signaling pathways that control colon cancer cell migrat...
متن کاملThe prion protein inhibits monocytic cell migration by stimulating β1 integrin adhesion and uropod formation.
The broad tissue distribution and evolutionary conservation of the glycosylphosphatidylinositol (GPI)-anchored prion protein (PrP, also known as PRNP) suggests that it plays a role in cellular homeostasis. Given that integrin adhesion determines cell behavior, the proposed role of PrP in cell adhesion might underlie the various in vitro and in vivo effects associated with PrP loss-of-function, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & development
دوره 18 8 شماره
صفحات -
تاریخ انتشار 2004